

CSOTTE 2012

Does Instructional Technology Improve Learning?

Three Case Studies

Dr. Renea Fike, Dr. David S. Fike, and Dr. Norman S. St. Clair University of the Incarnate Word

Research Issue

The use of technology in the classroom is increasing.

Some claim that technology may lead to improved learning; however, research confirming this claim is needed.

 This presentation provides three case studies of learning technologies with some surprising findings.

1. What student characteristics are associated with the decision to use a web-based e-textbook?

2. Do students who use the web-based textbook achieve different learning outcomes than those who use a traditional hardcopy textbook?

E-Textbook Research Scenario

Introductory Statistics course

 Students could choose to use Internet-based textbook (basically PDF format) or purchase a hardcopy textbook

Instructor recommended hardcopy textbook, but left decision to students

Sample Description

N = 56 students
Females - 61%
Hispanic - 73%
Mean age - 20.6 years
Freshmen/sophomores - 71%
Mean # of math courses completed - 1.52
Mean SAT Math - 508
Mean HS GPA - 3.59

Student Characteristics by Text Format

Student Characteristic	Hardcopy Group	E-book Group	p-value
Student Age, Yrs	20.4 ± 5.7	20.8 ± 3.3	NS ^b
Lower Class (Fr/So)	27 (71)	11(29)	
Upper Class (Jr/Sr)	6 (40)	9 (60)	.036
Female	22 (69)	10 (31)	
Male	11 (52)	10 (48)	NS
Hispanic	26 (67)	13 (33)	
Non-Hispanic	7 (50)	7 (50)	NS
High School GPA	3.63 ± .18	3.50 ± .39	NS
SAT Math	511 ± 76	512 ± 86	NS
College Math Courses Completed	1.73 ± 1.0	1.25 ± 1.0	NS

33 hardcopy, 20 e-text, 2 withdrew from class, 1 did not participate

Learning Outcomes by Group

Outcome	Hardcopy Group	E-book Group	p-value
Homework score	81.7 ± 14.4	68.1 ± 23.4	.027
Exam 1 score	86.3 ± 10.3	76.0 ± 16.6	.018
Exam 2 score	77.7 ± 12.8	63.8 ± 18.5	.006
Exam 3 score	79.7 ± 14.9	76.7 ± 16.2	.517
Final Course Average	82.2 ± 9.7	71.6 ± 16.4	.015
Final Grade			
Α	8 (24)	2 (10)	
В	14 (42)	5 (25)	
C	7 (21)	5 (25)	
D	4 (12)	5 (25)	
F	0 (0)	1 (5)	
Withdrew	0 (0)	2 (10)	
Completion Status			
Passed with A-C	29 (88)	12 (60)	
Did not pass	4 (12)	8 (40)	.039

Key Finding

After controlling for group differences at baseline, students *who used* <u>hardcopy</u> textbooks are estimated to earn about a letter grade <u>higher</u> (9.5 points) than those who use e-textbooks.

Limitations:

- Not a randomized (causal) design
- Relatively small sample
- Applied to two sections of one course
- Only considered one e-textbook format
- Did not include variables like student affect/motivation
- Did not determine why students chose a specific format

- The Efficacy of Blended Course Modality -V- Fully Online Traditional and Traditional Classrooms: Why are students resistant to blended learning?
- 2. What are students' perceptions of and experiences with blended learning courses?

Methods

 Qualitative Descriptive/Multiple Case Study Design;

 Participants – Three groups of Master's and PhD students participating in three blended courses in a three-year period;

Role of researcher: Instructor

Methods

• Data collection methods:

- Observations of students while in class
- Student reflection journals
- Post-class interviews
- Analysis: pattern matching, linking data to propositions, explanation building, time-series analysis, logic models, and cross-case synthesis (Yin, 2003)

Themes

First theme: Students struggled in the online/blended learning environment due to a sense of an artificial community.

Second theme: A lack of proficiency among students in using the technology had a negative impact on their learning experiences.

Not as well supported in the literature

Themes

Subsequent themes:

- Generational Age can be a factor.
- Sense of feeling overwhelmed
 - Students struggle with feeling overwhelmed when dealing with multiple technologies in the class (course management system, synchronous format, discussion board format – Facebook, using electronic resources, and online collaboration technology).

Themes

Subsequent themes:

- Students struggle with the self-directed nature of using online modalities.
- Faculty must be proficient with related technology.

 To determine if student learning outcomes differ based upon in-class review versus no in-class review.

- In other words, does review make a difference?
- 2. To determine if student learning outcomes differ based upon the method of review.
 - Does review method (clicker vs non-clicker) make a difference?

Methods Quantitative Component

I3 PPR Competencies

- 9 scenarios for each competency
 - 3 questions answered with clickers (reviewed)
 - 3 questions answered with paper/pencil (reviewed)
 - 3 questions not reviewed

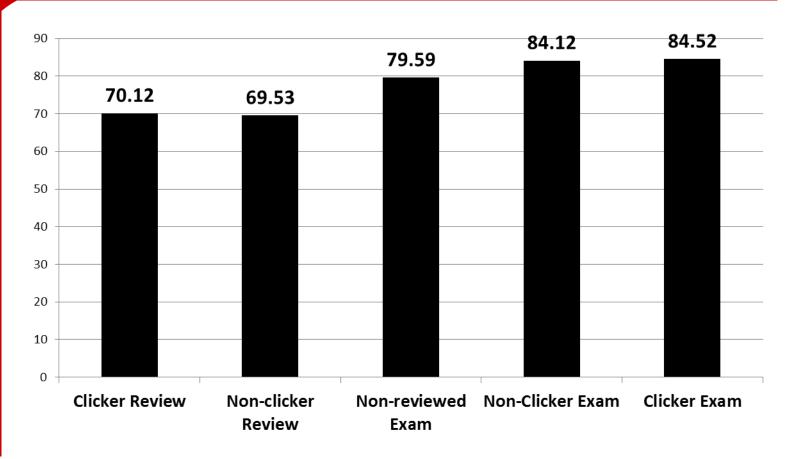
Methods

Mid-term exam—Competencies 1-7 covered

- Reviewed questions (both clicker and non-clicker) asked again
- Non-reviewed questions added

• Final exam—Competencies 8-13 covered

- Reviewed questions (both clicker and non-clicker) asked again
- Non-reviewed questions added


• Student survey

• Given the last day of class

Learning Outcomes

Findings Quantitative Component

<u>1. Does review make a difference?</u>

Yes.

Students scored significantly higher (half a letter grade) on exam questions when comparing reviewed to non-reviewed material.

<u>2. Do students achieve better learning outcomes</u> <u>when clickers are used</u>?

No.

The use of clickers for in-class review did not provide greater benefit than review using a traditional paper/pencil format.

Findings Qualitative Component

Are students satisfied with the use of clickers in instruction?

Yes.

Students stated that they were more engaged when clickers were used for review.

Key Finding

While the use of clickers may contribute to in-class student engagement, the benefit from the use of clickers <u>does not</u> extend to better student learning gains when compared to a traditional review method.

• Fike, D.S., Fike, R. & Lucio, K. (2012). Does clicker technology improve student learning?, *Journal of Technology and Teacher Education*, *20*(2), Spring 2012, 113-126.

Summary

- Findings from these three studies suggest that educators should:
 - 1. Evaluate the effectiveness of the use of technology.
 - 2. Allow time to prepare/train both the faculty and students before implementing technology.
 - 3. Use data to influence your technology choices.

Contact Information

Dr. Renea Fike Associate Professor of Education fike@uiwtx.edu

Dr. David S. Fike Senior Research Statistician dfike@uiwtx.edu

Dr. Norman S. St. Clair

Assistant Professor stclair@uiwtx.edu